
Talanta 101 (2012) 78–84
Contents lists available at SciVerse ScienceDirect
Talanta
0039-91

http://d

$Pate
n Corr

E-m
journal homepage: www.elsevier.com/locate/talanta
Simultaneous determination of Solvent Yellow 124 and Solvent Red 19 in
diesel oil using fluorescence spectroscopy and chemometrics$
J. Orzel a, M. Daszykowski a,n, I. Grabowski b, G. Zaleszczyk b, M. Sznajder b, B. Walczak a

a Department of Analytical Chemistry, Chemometric Research Group, Institute of Chemistry, The University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland
b Customs House of Customs Laboratory in Biala Podlaska, 21 Celnikow Polskich Street, 21-500 Biala Podlaska, Poland
a r t i c l e i n f o

Article history:

Received 16 May 2012

Received in revised form

16 August 2012

Accepted 22 August 2012
Available online 30 August 2012

Keywords:

Euromarker

Sudan Red 7B

EEM

Fluorescence landscapes

N-PLS
40/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.talanta.2012.08.031

nt pending.

esponding author.

ail address: mdaszyk@us.edu.pl (M. Daszykow
a b s t r a c t

Differences in tax levels for diesel oil stimulate the illegal removal of characteristic diazo compounds

purposely added to designate its possible usage. In order to reduce the losses in the national income,

there is a strong need to develop a sensitive and cost-effective analytical procedure for the detection of

this illegal action. In this study, we describe a novel analytical approach for a qualitative and

quantitative determination of two diazo compounds (Solvent Yellow 124 and Solvent Red 19) that

are usually added to diesel oil. The methodology proposed combines the use of excitation–emission

matrix fluorescence spectroscopy as an analytical technique and partial least squares regression as a

multiple modeling tool. With this new methodology, relatively low root mean square errors of

prediction (for independent set of test samples) that are equal to 0.223 for Solvent Red 19 and 0.263

for Solvent Yellow 124, were obtained and the results were stable, which were indicated by an analysis

performed after 48 and 96 h. The methodology is also nondestructive and allows for (i) simultaneous

detection of diesel oil additives, (ii) determination of satisfactory limits of detection (0.048 and

0.042 mg L�1 for Solvent Red 19 and Solvent Yellow 124, respectively), and (iii) obtaining of

considerably low relative standard deviations of 2.33% for Solvent Yellow 124 and of 3.23% for Solvent

Red 19 in comparison with the existing norm level.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Diesel oil is a commonly used fuel for transport, heating, and
agricultural machinery drive purposes. Depending on its usage,
the tax levels are different in many European and American
countries. A low tax fuel (used for heating and agricultural
machinery drive purposes) is spiked with additives which change
its color from yellow to red. The type of additives varies from
country to country, but everywhere a marker and a dye are added
at the stage of oil production. In the European Union countries,
Solvent Yellow 124 (SY124) is a common marker added to low tax
fuels in concentration levels strictly defined in the range of
6.0 mg L�1–9.0 mg L�1 [1]. Various dyes like Solvent Red 164
(SR164), Solvent Red 19 (SR19), and Solvent Red 26 (SR26) can be
used to ensure the red color of the fuel, but their specific use and
concentration levels are legally regulated in every country. In
Poland, SR164 and SR19 dyes are added interchangeably in diesel
oil and their concentration levels must be higher than 6.6 mg L�1
ll rights reserved.

ski).
and 6.3 mg L�1, respectively, while the concentration of Solvent
Yellow 124 is regulated by the European Norm [2].

Several analytical procedures for the determination of the dye
and marker in different types of oils have been described in other
literature. In 2004, a validated procedure for determination of
SY124 in gas oil and kerosene was introduced as the EU reference
method [3]. The method is based on high performance liquid
chromatography (HPLC) determination of SY124 spiked with
different dyes. Another procedure for simultaneous quantitative
determination of both SY124 and SR19 (a dye used in Poland and
other European countries) in fuel has been developed [4]. How-
ever, it requires the separation of the reagents of interest with the
HPLC technique before their qualitative or quantitative determi-
nation with UV-vis or diode array (DAD) detector. Recently, a
method for detection of SR164 in vehicle exhaust has also been
described in [5].

SY124 and diazo compounds SR19, SR164, and SR26, also
known as Sudan dyes, have fluorescence properties since their
molecules contain aromatic rings and coupled double bonds.
Chen et al. have proposed [6] the use of conventional fluorescence
spectroscopy for the determination of the Sudan IV dye in food
samples. Traditionally, either the maximum intensity of the
emission spectrum or the emission spectrum in a selected range
of wavelengths is recorded at a single excitation wavelength
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characteristic for the analyzed fluorophor. This method of analysis
may be preferred when the concentration of one fluorophor is to be
determined or when the mixture being analyzed contains only a
limited number of compounds with fluorescence properties and a
quenching effect is not to be expected. In this context, the simulta-
neous determination of the dye and marker introduced in diesel oil,
which may contain many other fluorophors, by the conventional
fluorescence spectroscopy can be a difficult task. This task is further
complicated by the fact that the fluorophors of interest have different
characteristic excitation and emission ranges.

Excitation–emission fluorescence spectroscopy allows for the
simultaneous collecting of excitation and emission spectra of
samples. A sample is described by a two-dimensional signal that
contains peaks from all excited fluorophors. All two-dimensional
signals collected for a set of samples form a complex three-way
data (third-order tensor) of dimensions: samples� excitation

wavelengths� emission wavelengths. Such a type of data follows
the trilinear or parallel factor analysis (PARAFAC) model. Con-
struction of multivariate or multi-way calibration models [7–10]
offers the possibility to simultaneously determining the dye and
marker that were added to diesel oil when the samples contain
many constituents that are not of interest. This is the so-called
second-order advantage [10–12]. In general, the calibration mod-
els using the unfolded second-order data for a sample are to be
preferred when the analyte-background interactions or changes
in spectral properties of samples are examined [11].

The aim of this work is to develop a new analytical approach for
the simultaneous determination of SY124 and SR19 in diesel oil
without any sample preparation. For this purpose, the excitation–
emission fluorescence spectroscopy is used as the analytical tech-
nique and the results of two calibration methods, e.g. partial least
squares regression and N-way partial least squares regression, are
compared [13] for the studied problem.
2. Materials and methods

2.1. Samples preparation

Diesel oil was purchased from a local gas station, while SY124
(98.0% purity) was obtained from Sigma-Aldrich. A stock solution
was prepared by dissolving 5 mg of SY124 in 50 mL of diesel oil,
while 5 mg of SR19 (obtained from IBPO Poland, 92.3% purity)
was dissolved in 50 mL diesel oil in order to obtain a stock
solution of SR19. The SR19 and SY124 stock solutions were mixed
so that the concentration of each reagent in the mixture was
varied in the range of 0–10 mg L�1. A total of 20 mixture
combinations were considered (see Fig. 1). Three samples were
prepared (three laboratory replicates) for each mixture combina-
tion (for example 8 mg L�1 of SR19 and 4 mg L�1 of SY124, see
Fig. 1), and for each of them the EEM fluorescence spectroscopy
measurements were repeated three times (technical replicates).
Thus, a total of 180 EEM fluorescence images were registered. The
scheme of the experimental deign is shown in Fig. 1.

To determine the limits of detection and quantification, nine
laboratory replicates containing SY124 at a concentration level of
2�10�3 mg L�1 and nine laboratory replicates containing SR19 at a
level of 2�10–3 mg L�1 were additionally prepared. Repeatability
was evaluated using a set of 18 samples at three concentration levels
(4, 5, and 6 mg L�1). Three solutions at each concentration level were
prepared for SY124 (a total of 9 samples) and the same number of
solutions at the same concentration levels were prepared for SR19
(9 samples). The measurements were performed immediately after
sample preparation. In order to evaluate the stability of the measure-
ment results over time, 18 samples (used for testing the repeatability)
were analyzed after 48 and 96 h.
2.2. Fluorescence measurements

A Carry Eclipse Varian FL0811M000 spectrofluorometer with
right angle geometry was used to perform the measurements. The
emission spectra were registered in a 2 nm interval from 350 to
800 nm (226 wavelengths) at 46 excitation wavelengths selected
in a 10 nm interval in the range of 250–700 nm. Detector
sensitivity was set to 500 V and the excitation and emission slits
were set to 5 nm. Raw spectral data were subjected to a further
chemometric analysis and modeling.

2.3. Preprocessing of fluorescence signals

One of the most important preprocessing steps when working
with fluorescence signals is the correction of Rayleigh scattering,
which is chemically irrelevant. Different approaches for scattering
correction have been described in the literature. The matrix
elements corresponding to the spectral regions with the Rayleigh
scattering can be (i) replaced with zeros [14,15], (ii) treated as
missing values [16], or (iii) removed and the missing elements of
the signal can be interpolated in different possible ways [17,18].
In this paper the scattering effect was removed and the signals
were interpolated by the Delaunay triangulation [17].

2.4. Modeling of excitation–emission data

2.4.1. Partial least squares regression

Partial least squares regression, PLS, is a popular chemometric
tool used to construct multivariate calibration models. The aim of
the multiple PLS regression is to describe the relationship
between a set of explanatory variables, X (a set of matricized
EEM images as: samples� (excitation wavelengths� emission

wavelengths)) and a response variable, y (a marker or a dye
concentration) [13]. In other words, the original strongly corre-
lated spectral signals are replaced by a small number of latent
factors (new variables), T, for which the maximum covariance
with the modeled property, y, is observed. The PLS-1 model can
be described in the following way:

X¼ TPT
þE ð1Þ

y¼ Tqþr ð2Þ

where X(I� JK) is the matricized form of the data, vector q(f�1)
holds the regression coefficients for f PLS factors, T(I� f), the elements
of P(JK� f) matrix the PLS loading values, matrix E(I� JK) holds the
differences between the observed and predicted X with f PLS factors
and the residual vector r(I�1) contains the differences between the
observed and predicted y(I�1) values.

2.4.2. N-way partial least squares

The N-way partial least squares, N-PLS, is a generalization of
the classic PLS regression for higher order data arrays [19]. In the
course of the model construction, three-way data array, X, of size
I� J�K (e.g. samples � excitation wavelengths � emission wave-

lengths), is decomposed into new variables (the so-called triads).
The number of the new variables constituting the triads depends
on the dimensionality of modeled data.

Prior to modeling, the three-way array is metricized into a data
matrix. For the data matrix, XI� JK, of size I� JK, where I is the
number of samples, J is the number excitation wavelengths, and K
is the number of emission wavelengths, the decomposition can be
presented as follows:

X¼HðWJ9� 9WK
Þ
T
þE ð3Þ

where X(I� JK) is the matricized form of the data, H(I� f) is the
score matrix, WJ and WK are the respective loading matrices for
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Reagent Concentration[mg · L-1]

SY124 0 0 0 0 2 2 2 4 4 5 5 5 7 7 7 9 9 10 10 10

SR19 0 2 5 10 0 2 7 3 8 0 5 10 0 2 7 3 8 0 5 10

Fig. 1. Design of the experiment with respect to concentrations of a marker compound (Solvent Yellow 124, SY124) and a dye compound (Solvent Red 19, SR19).
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the excitation mode and the emission mode, E(I� JK) is the error
matrix. The symbol 9�9 denotes the Khatri Rao product [20].

The construction of triads is optimized in order to maximize
the covariance between H and y. Calibration models are con-
structed using the new variables. A more detailed description of
the N-PLS method can be found in [19].

2.5. The complexity of regression models

The number of new variables (factors) used for the model’s
construction is called the complexity of the model, f. To determine
the optimal complexity a cross-validation procedure is usually
used [21]. At each step of the validation procedure either a sample
or a subset of p samples (a validation set) is removed from the
data and PLS models with increasing complexity are built for the
remaining samples (a model set). Then, a prediction is performed
for the removed samples based on the model set. The procedure is
repeated for the next subset of p objects removed from the data,
while all possible subsets are not considered when validating the
models with an increasing complexity. The root mean square
error of cross-validation, RMSECV, is calculated as a measure of
the model’s performance using the following equation:

RMSECVðf Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
i ¼ 1

ðy�1�ŷ�iðf ÞÞ
2

vuut ð4Þ

where y�i is the i-th experimental value of the response variable
removed during the cross-validation procedure, ŷ�iðf Þ is the i-th
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predicted value of the removed response variable using the PLS
model with f latent factors and m is the number of objects in the
model set.

The optimal PLS model is the one characterized by the lowest
or acceptable RMSCV. The choice of p in the leave-p-out cross-
validation scheme depends on the user and data dimensionality.
The Monte Carlo cross-validation procedure is a cross-validation
scheme where the validation set of samples is selected randomly
from the model set [22]. In our study, during the cross-validation
procedure all of the technical replicates were included in the
same validation set of samples (a cancelation group). Once a
calibration model of a definite complexity is constructed, its fit is
scored by the root mean square error (RMSE):

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i ¼ 1

ðyi�ŷiÞ
2

vuut ð5Þ

where yi is the i-th experimental response value, ŷiis the i-th
predicted response value using the model of definite factors and
m is the number of samples in the model set.

The prediction properties of the constructed model are eval-
uated on the basis of an independent test set (dataset that was
not used for the model’s construction) and expressed as root
mean square error of prediction (RMSEP):

RMSEP¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mt

Xmt

i ¼ 1

ðyt
i�ŷ

t
i Þ

2

vuut ð6Þ

where yt
i and ŷ

t
i are the i-th experimental and i-th predicted

response value for the i-th independent test sample using the
calibration model of a definite complexity and mt is the number of
independent test samples.

2.6. Software

All calculations were performed within the MATLAB environ-
ment. PLS models were constructed using the freely available
TOMCAT toolbox [23]. The algorithm for scattering correction
described in [17] was used. The N-way Toolbox (version 3.1) [24]
was adopted to construct N-PLS models.
3. Results and discussion

The raw spectra collected were characterized by a relatively
high signal-to-noise ratio and therefore, neither a noise correction
nor baseline elimination was performed.

The characteristic Rayleigh scattering was observed for the
samples examined, e.g. samples of a clean diesel oil without
additives, an oil with the SY124 marker, an oil with SR19 dye and
an oil spiked with both the SY124 marker and the SR19 dye.
Fig. 2a displays the scattering effect as a diagonal line of peaks
starting at the wavelength of 350 nm. As was mentioned earlier,
the Rayleigh scattering is a chemically irrelevant component and
should be removed prior to the models’ construction (the first
step of the raw data preprocessing). The correction procedure
used in this article consists of detecting the maxima of the
Rayleigh scattering peaks followed by counting the number of
sampling points with the scattering effect and replacing the
values of the sampling points with a scattering effect with values
interpolated using the Delaunay triangulation [25]. For our
dataset, it was found that seven sampling points on the left side
and seven sampling points on the right side of the detected
maxima were sufficient to handle the scattering effect in all EEM
fluorescence images. A contour map of the EEM fluorescence
image obtained from a pure diesel oil sample after removing the
Rayleigh scattering is presented in Fig. 2b. It should be empha-
sized that only meaningful spectra were considered, e.g. the
spectra for each sample were recorded so that the lower emission
wavelength level was at least equal to the lower excitation
wavelength level.
3.1. Construction of PLS models for SR19 and SY124

Prior to the construction of the multiple PLS models, the EEM
data containing 180 excitation–emission spectra were unfolded in
the form of spectra� (emission wavelengths� excitation wave-

lengths). Then, model and test sets were selected. The PLS model
calibrating Solvent Yellow 124 was built using 117 spectra (model
set) describing samples with analyte concentration at levels of 0,
5, 7, and 10 mg L�1. The remaining 63 spectra (i.e. samples with
SY124 concentrations equal to 2, 4, and 9 mg L�1) formed the test
set. To construct model for calibration of Solvent Red 19 spectra
were divided into a model set containing 108 spectra (EEMs of
samples with concentrations of SR19 equal to 0, 3, 5, 7, and
10 mg L�1, respectively) and a test set formed by 72 spectra
(containing 2, 5, and 8�10�3 mg L�1 of SR19).

Two individual PLS-1 models were constructed to predict the
concentration of SY124 or SR19, respectively. The Monte Carlo
cross-validation scheme with a validation set of 20 samples
(p¼20) was adopted to evaluate the optimal complexity of the
models. At each cross-validation step, 20 samples out of 500 were
randomly selected for the validation set.

Firstly, the PLS-1 model for the prediction of the concentration
of SR19 was constructed. The model with eight latent variables,
presented in Fig. 3a, was considered as the optimal. Its RMSCV
was equal to 0.174. The fit and the prediction properties,
expressed as RMSE and RMSEP, were found to be 0.153 and
0.223, respectively. As indicated in Fig. 3a, the model has similar
variances for the predictions of the model and test set samples
regardless of their concentration levels.

The optimal PLS model obtained for SY124 also contained
eight latent variables. RMSE and RMSEP were equal to 0.229 and
0.263, respectively. Compared to the PLS model constructed for
SR19, a larger scatter of the values predicted for the model and
test set samples was observed. The variances of concentrations
predicted for the model and test set samples are comparable at
different concentration levels (see Fig. 3b).
3.2. Construction of N-PLS models for SR19 and SY124

A possible improvement of the calibration models can be
expected when using N-PLS because of the well-defined three-
linear structure of the excitation–emission data. Therefore, the
N-PLS models were built for the same model and test set samples
(see Section 3.1) as those used to construct the conventional PLS-
1 models on the metricized data, but the data sets were arranged
as spectra� excitation wavelengths� emission wavelengths. Ortho-
gonality constraint was not considered for any of the modes. Two
N-PLS models, each of which had 10 latent variables, were used
for the prediction of the concentrations for SR19 and SY124,
respectively.

As indicated in Table 1 and the graphical representation in
Fig. 3d, the N-PLS model and the classic PLS model constructed for
SY124 have virtually the same performance (compare the values
for fit and prediction shown in Table 1). On the other hand, when
modeling SR19, PLS outperforms the N- PLS model (see Table 1
and Fig. 3b and d) and requires a smaller number of latent
variables compared to the N-PLS model.
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Fig. 2. Landscapes of excitation–emission matrices for pure diesel oil: (a) with the Rayleigh scattering effect and (b) without the Rayleigh scattering effect.
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3.3. Figures of merit of PLS models

Considering a good performance of classic PLS models, figures
of merit were calculated as described in [26,27]. The sensitivity
was calculated as the inverse of Euclidean norm of vector
containing regression coefficients, and was equal to 13.67 and
11.49 for models describing concentration of SR19 and SY124,
respectively. Selectivity of PLS models was equal to 0.015 for SR19
and 0.036 for SY124.

Next, the ratio between instrumental noise and sensitivity was
calculated for both calibration models. On the basis of the ratios,
limits of detection (LODs) were calculated as the ratio times
3.3 for both analytes (a dye and a marker).
The LOD value of 0.048 mg L�1 and 0.042 mg L�1 was obtained
for dye and for marker, respectively. The limits of quantification
(LOQ) were calculated as 10 times the ratio values for both analytes.
The LOQ values were equal 0.144 and 0.126 mg L�1 for SR19 and
SY124, respectively.

3.4. Analytical validation

Next, the repeatability of the proposed analytical approach
was tested. Predicted mean concentration values, relative stan-
dard deviations (RSD), and the uncertainty for the three concen-
tration levels that were obtained by conventional PLS are shown
in Table 2.
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Table 1
Fit and prediction properties of calibration models constructed for SR19 and

SY124. PLS models were constructed with eight factors, for N-PLS models

construction 10 factors were used.

Additive PLS N-PLS

RMSE RMSEP RMSE RMSEP

SR19 0.153 0.223 0.193 0.305

SY124 0.229 0.263 0.212 0.260

Table 2
Repeatability of proposed method obtained from three concentration levels. Mean

values were calculated for three laboratory replicates, uncertainty calculated for

95% confidence interval. PLS models were constructed with 8 factors.

Concentration
[mg L�1]

PLS

SY124 SR19

Mean
[mg L�1]

RSD
[%]

7
[mg L�1]

Mean
[mg L�1]

RSD
[%]

7
[mg L�1]

4 3.559 3.14 0.341 4.049 1.33 0.164

5 4.394 3.25 0.435 5.129 1.24 0.194

6 6.027 3.31 0.607 6.282 4.42 0.846
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From the RSD values presented in Table 2, one can conclude
that the validated approach for SR19 performs better than the one
for SY124. In the literature [3], the analytical validation of the
HPLC method for Solvent Yellow determination is presented. RSD
(calculated at the level of 6 mg mL�1) and LOD are equal 0.68%
and 0.02 mg mL�1, respectively. The corresponding values for
presented method are 3.14% and 0.048 mg L�1 for RSD (at the
same concentration level) and LOD, respectively. The HPLC
method for the dye determination presented in [4] is not
validated thus comparison of the results cannot be compared.

The stability of the results obtained from PLS method was
tested statistically using the measurements performed immedi-
ately after preparation (set as a conditional level of 0 h) and after
48 and 96 h. The results of the analysis in three 48 h intervals are
presented in Table 3.

Two statistical hypotheses were checked for the dye and
marker concentrations predicted by the conventional PLS method
using F-test. The first hypothesis is that there is no difference in
the variances of the predicted values obtained from PLS for
samples analyzed at a conditional time of 0 h and after 48 h. For
oil samples spiked with a dye the F-value was equal to 1.107,
while a F-value of 0.899 was calculated for the oil samples mixed
with a marker. The p-values calculated for the two-sided F-test



Table 3
Robustness of proposed method calculated for three concentration levels tested after 0 h , 48 h, and 96 h. Mean values were calculated for three laboratory replicates,

uncertainty calculated for 95% confidence interval. PLS models were constructed with eight factors.

Concentration [mg� L�1] Time [h] PLS
SY124 SR19

Mean [mg L�1] RSD [%] 7 [mg L�1] Mean [mg L�1] RSD [%] 7 [mg L�1]

4.000 cond. 0 3.559 0.164

48 3.233 3.65 0.360 3.941 1.92 0.350

96 3.410 2.33 0.242 3.917 1.65 0.197

5.000 cond. 0 4.394 3.25 0.435 5.129 1.24 0.194

48 4.727 3.27 0.471 5.076 3.29 0.663

96 4.518 4.37 0.505 5.017 3.69 0.564

6.000 cond. 0 6.027 3.31 0.607 6.282 4.42 0.846

48 5.647 2.26 0.388 6.100 4.21 0.967

96 5.787 4.82 0.849 5.996 3.52 0.644
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are 0.9492 and 1.053, respectively. The null hypothesis is rejected
when the p-values are smaller than a definite significant level
value, a, of 0.01 or 0.05. For the studied case, the null hypothesis
of no significant differences in the two variances calculated for
the PLS predicted values can be accepted for both types of
samples at a level of significance of 0.05. The second null
hypothesis is that there is no difference in the variances of the
predicted values obtained from PLS for the samples analyzed at a
conditional time of 0 h and after 96 h. The values of the estimated
F ratios were 1.154 (p-value of 0.9284) for the samples with the
dye and 0.899 (p-value of 1.053) for the samples mixed with the
marker. Again the null hypothesis can be accepted at a significant
level of 0.05.

Assuming a significant level of 0.05 it can be concluded that
the proposed analytical approach is stable over time (there are no
significant differences in models’ performance) and constructed
calibration models allow for the determination of analytes in
samples after 48 and 96 h with comparable and acceptable error
levels.
4. Conclusions

In this paper, a novel approach combining an excitation–emission
matrix fluorescence spectroscopy as an analytical technique and
partial least squares regression as a multiple modeling tool was
developed to quantitatively and qualitatively determine Solvent Red
19 and Solvent Yellow 124 in diesel oil. It is a nondestructive
procedure which does not require expensive reagents and laborious
sample preparation prior to analysis. The results obtained from the
validation procedure give evidence that the approach is stable over
time. These attractive features make the proposed methodology a
potential screening technique that can be used directly at the place
where samples are collected and thus to support the actions of the
customs office and related agencies. Two calibration methods were
evaluated and compared, namely PLS and N-PLS. Calibration models
constructed to predict concentration of SY124 in samples have
comparable fit and prediction properties. Compared to PLS, the
N-PLS model describing content of SR19 was characterized with
higher RMSE and RMSEP values. In our application, the PLS model is
preferred due to its conceptual simplicity. In terms of validation
parameters (RSD and LOD), the HPLC method for SY124 determina-
tion performs better than the proposed approach. On the other hand,
simplicity and low cost of fluorescence spectroscopy encourage
its use.
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